# Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №17» Старооскольского городского округа

| D A COMOTREINO        |
|-----------------------|
| PACCMOTPEHO           |
| на заседании ШМО      |
| учителей математики и |
| информатики           |
| руководитель ШМО      |
| / Кушнерева Г.Ю. /    |
| протокол              |
| от 26 августа 2020 г. |

**№** 1

# **СОГЛАСОВАНО** заместитель директора

\_\_/М.О. Гражданкина

«27»августа 2020г.

#### **PACCMOTPEHO**

на заседании педагогического совета, протокол

от «28» августа 2020г. № 11

#### **УТВЕРЖДЕНО**

приказом МБОУ «Средняя общеобразовательная школа №17»

от «31» августа 2020г. № 321

02 - 11

# РАБОЧАЯ ПРОГРАММА по информатике

основное общее образование (7-9 классы)

# базовый уровень

Составитель:

Кушнерева Галина Юрьевна, учитель информатики, высшей квалификационной категории

#### Пояснительная записка

Рабочая программа по информатике составлена **на основе авторской программы** Босовой Л.Л. «Программа к УМК «Информатика» Л.Л. Босовой, А.Ю. Босовой. 7-9 классы (авторы: Л.Л. Босова, А.Ю. Босова), изданной в сборнике Информатика. Примерные рабочие программы. 5-9 классы: учебно-методическое пособие / сост. К.Л. Бутягина. — 3-е изд., стереотип. — М.: БИНОМ. Лаборатория знаний, 2020.

Методологической основой федеральных государственных образовательных стандартов является системно-деятельностный подход, в рамках которого реализуются современные стратегии обучения, предполагающие использование информационных и коммуникационных технологий (ИКТ) в процессе изучения всех предметов, во внеурочной и внешкольной деятельности на протяжении всего периода обучения в школе.

Организация учебно-воспитательного процесса в современной информационнообразовательной среде является необходимым условием формирования информационной культуры современного школьника, достижения им ряда образовательных результатов, прямо связанных с необходимостью использования информационных и коммуникационных технологий.

Средства ИКТ не только обеспечивают образование с использованием той же технологии, которую учащиеся применяют для связи и развлечений вне школы (что важно само по себе с точки зрения социализации учащихся в современном информационном обществе), но и создают условия для индивидуализации учебного процесса, повышения его эффективности и результативности. На протяжении всего периода существования школьного курса информатики преподавание этого предмета было тесно связано с информатизацией

Изучение информатики в 7–9 классах вносит значительный вклад в достижение главных **целей** основного общего образования, способствуя:

- формированию целостного мировоззрения, соответствующего современномууровню развития науки и общественной практики за счет развития представлений об информации как важнейшем стратегическом ресурсе развития личности, государства, общества; понимания роли информационных процессов в современном мире;
- совершенствованию общеучебных и общекультурных навыков работы с информацией в процессе систематизации и обобщения имеющихся и получения новых знаний, умений и способов деятельности в области информатики; развитию навыков самостоятельной учебной деятельности школьников (учебного проектирования, моделирования, исследовательской деятельности и т.д.);
- воспитанию ответственного и избирательного отношения к информации с учетом правовых и этических аспектов ее распространения, воспитанию стремления к продолжению образования и созидательной деятельности с применением средств ИКТ.

В учебном плане основной школы информатика представлена как базовый курс в 7–9 классах (три года по одному часу в неделю, всего 104 часа).

Программа рассчитана:

7 класс - 35 часов в год (1 час в неделю), что соответствует учебному плану.

Программой предусмотрено проведение:

- практических работ 12;
- контрольная работа 3.

8 класс - 35 часов в год (1 час в неделю), что соответствует учебному плану.

Программой предусмотрено проведение:

- практических работ 21;
- контрольных работ 3

9 класс - 34 часа в год (1 час в неделю), что соответствует учебному плану.

Программой предусмотрено проведение:

- практических работ 17;
- контрольных работ -4.

#### Учебно-методические комплекты:

- 1. Информатика. Примерные рабочие программы. 5-9 классы: учебно-методическое пособие / сост. К.Л. Бутягина. 3-е изд., стереотип. М.: БИНОМ. Лаборатория знаний, 2020.
- 2. Информатика. 7 класс: учебник / Л.Л. Босова, А.Ю. Босова. М.: БИНОМ. Лаборатория знаний, 2019.
- 3. Босова Л.Л. Информатика. 8 класс : учебник / Л.Л. Босова, А.Ю. Босова. 2-е изд., стереотип. М.: БИНОМ. Лаборатория знаний, 2020.
- 4. Информатика: учебник для 9 класса / Л.Л. Босова, А.Ю. Босова. 7-е изд., стереотип. М.: БИНОМ. Лаборатория знаний, 2018.
- 5. электронные приложения к учебникам в авторской мастерской Л. Л. Босовой на сайте http://metodist.Lbz.ru

**Изменения**, внесённые в авторскую программу: согласно учебному плану в 7 и 8 классах добавлено по 1 часу на повторение основных понятий курса (увеличен резерв учебного времени).

**Планируемые результаты** освоения обучающимися основной образовательной программы основного общего образования уточняют и конкретизируют общее понимание личностных, метапредметных и предметных результатов как с позиции организации их достижения в образовательном процессе, так и с позиции оценки достижения этих результатов.

Планируемые результаты сформулированы к каждому разделу учебной программы. Планируемые результаты, характеризующие систему учебных действий в отношении опорного учебного материала, размещены в рубрике «Выпускник научится». Они показывают, какой уровень освоения опорного учебного материала ожидается от выпускника. Эти результаты потенциально достигаемы большинством учащихся и выносятся на итоговую оценку как задания базового уровня (исполнительская компетентность) или задания повышенного уровня (зона ближайшего развития). Планируемые результаты, характеризующие систему учебных действий в отношении знаний, умений, навыков, расширяющих и углубляющих опорную систему, размещены в рубрике «Выпускник получит возможность научиться». Эти результаты достигаются отдельными мотивированными и способными учащимися; они не отрабатываются со всеми группами учащихся в повседневной практике, но могут включаться в материалы итогового контроля.

Пичностные результаты — сформировавшаяся в образовательном процессе система ценностных отношений учащихся к себе, другим участникам образовательного процесса, самому образовательному процессу, объектам познания, результатам образовательной деятельности. Основными личностными результатами, формируемыми при изучении информатики в основной школе, являются:

- наличие представлений об информации как важнейшем стратегическом ресурсе развития личности, государства, общества;
- понимание роли информационных процессов в современном мире;
- владение первичными навыками анализа и критичной оценки получаемой информации;

- ответственное отношение к информации с учетом требований информационной безопасности правовых и этических аспектов ее распространения;
- развитие чувства личной ответственности за качество окружающей информационной среды;
- способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области информатики и ИКТ в условиях развития информационного общества;
- готовность к повышению своего образовательного уровня и продолжению обучения с использованием средств и методов информатики и ИКТ;
- способность и готовность к общению и сотрудничеству со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебноисследовательской, творческой деятельности;
- способность и готовность к принятию ценностей здорового образа жизни благодаря знанию основных гигиенических, эргономических и технических условий безопасной эксплуатации средств ИКТ.

Метапредметные результаты — освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные), способность их использования в учебной, познавательной и социальной практике. Основными метапредметными результатами, формируемыми при изучении информатики в основной школе, являются:

- владение общепредметными понятиями «объект», «система», «модель», «алгоритм», «исполнитель» и др.;
- владение информационно-логическими умениями: определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- владение умениями самостоятельно планировать пути достижения целей;
  соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий, корректировать свои действия в соответствии с изменяющейся ситуацией; оценивать правильность выполнения учебной задачи;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- владение основными универсальными умениями информационного характера, такими как: постановка и формулирование проблемы; поиск и выделение необходимой информации, применение методов информационного поиска; структурирование и визуализация информации; выбор наиболее эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственно-графическую или знаково-символическую модель; умение строить разнообразные информационные структуры для описания объектов; умение «читать» таблицы, графики, диаграммы, схемы и т. д., самостоятельно перекодировать информацию из одной знаковой системы в другую; умение выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования;
- ИКТ-компетентность широкий спектр умений и навыков использования средств информационных и коммуникационных технологий для сбора, хранения,

преобразования и передачи различных видов информации, навыки создания личного информационного пространства (обращение с устройствами ИКТ; фиксация изображений и звуков; создание письменных сообщений; создание графических объектов; создание музыкальных и звуковых сообщений; создание, восприятие и использование гипермедиасообщений; коммуникация и социальное взаимодействие; поиск и организация хранения информации; анализ информации) и информационной безопасности.

Предметные результаты включают в себя: освоенные обучающимися в ходе изучения учебного предмета умения, специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами.

В соответствии с федеральным государственным образовательным стандартом общего образования основные предметные результаты изучения информатики в основной школе отражают:

- формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель — и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе, развитие умений составлять и записывать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, ветвящейся и циклической;
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей – таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Предметные результаты сформулированы к каждой содержательной линии учебного предмета:

- 1) линия «Информация и информационные процессы»;
- 2) линия «Компьютер как универсальное устройство работы с информацией»;
- 3) линия «Математические основы информатики»;
- 4) линия «Алгоритмы и элементы программирования»;
- 5) линия «Моделирование и формализация»;
- 6) линия «Обработка графической информации»;
- 7) линия «Обработки текстовой информации»;
- 8) линия «Мультимедиа»;
- 9) линия «Обработки числовой информации в электронных таблицах»;
- 10) линия «Коммуникационные технологии».

Планируемые результаты, связанные с освоением ключевых понятий курса информатики, представлены в рубрике «Выпускник будет знать ...».

Планируемые результаты, характеризующие систему учебных действий в отношении опорного учебного материала, размещены в рубрике «Выпускник научится ...». Они показывают, какой уровень освоения опорного учебного материала ожидается от выпускника. Эти результаты потенциально достигаемы большинством учащихся и выносятся на итоговую оценку как задания базового уровня (исполнительская компетентность) или задания повышенного уровня (зона ближайшего развития).

Планируемые результаты, характеризующие систему учебных действий в отношении знаний, умений, навыков, расширяющих и углубляющих опорную систему, размещены в рубрике «Выпускник получит возможность научиться ...». Эти результаты достигаются отдельными мотивированными и способными учащимися; они не отрабатываются со всеми группами учащихся в повседневной практике, но могут включаться в материалы итогового контроля.

# В результате изучении содержательной линии «Информация и информационные процессы»

Выпускник будет знать:

- сущность основных понятий предмета: информатика, информация, информационный процесс, информационная система и др.;
- основные единицы измерения количества информации и соотношения между ними;
  Выпускник научится:
  - различать виды информации по способам её восприятия человеком и по способам ее представления на материальных носителях;
  - приводить примеры информационных процессов процессов, связанных с хранением, преобразованием и передачей данных – в живой природе и технике;
  - раскрывать общие закономерности протекания информационных процессов в системах различной природы;
  - кодировать и декодировать тексты по заданной кодовой таблице;
  - определять длину кодовой последовательности по длине исходного текста и кодовой таблице равномерного кода;
  - описывать размер двоичных текстов, используя термины «бит», «байт» и производные от них;

#### Выпускник получит возможность:

- углубить и развить представления о современной научной картине мира, об информации как одном из основных понятий современной науки, об информационных процессах и их роли в современном мире;
- узнать о том, что любые дискретные данные можно описать, используя алфавит, содержащий только два символа, например, 0 и 1;
- научиться определять информационный вес символа произвольного алфавита;
- научиться определять мощность алфавита, используемого для записи сообщения;
- научиться оценивать информационный объем сообщения, записанного символами произвольного алфавита.

# В результате изучении содержательной линии «Компьютер как универсальное устройство работы с информацией»

Выпускник будет знать:

- назначение основных компонентов компьютера (процессора, оперативной памяти, внешней энергонезависимой памяти, устройств ввода-вывода), характеристиках этих устройств;
- основные вехи истории и тенденции развития компьютеров, пути улучшения их характеристик;
- круг задач, решаемых с помощью суперкомпьютеров;

 сущность понятий, связанных с передачей данных (источник и приемник данных; канал связи, скорость передачи данных по каналу связи, пропускная способность канала связи).

#### Выпускник научится:

- классифицировать средства ИКТ в соответствии с кругом выполняемых задач, в том числе описывать виды и состав программного обеспечения современного компьютера;
- определять качественные и количественные характеристики компонентов компьютера;
- использовать термины, описывающие скорость передачи данных, оценивать время передачи данных;
- классифицировать файлы по типу и иным параметрам;
- выполнять основные операции с файлами (создавать, сохранять, редактировать, удалять, архивировать, «распаковывать» архивные файлы);
- разбираться в иерархической структуре файловой системы (записывать полное имя файла (каталога), путь к файлу (каталогу) по имеющемуся описанию файловой структуры некоторого информационного носителя);
- использовать маску для операций с файлами;
- осуществлять поиск файлов средствами операционной системы.

#### Выпускник получит возможность:

- научиться осознанно подходить к выбору ИКТ-средств для своих учебных и иных целей; подбирать программное обеспечение, соответствующее решаемой задаче;
- узнать о физических ограничениях на значения характеристик компьютера;
- овладеть знаниями, умениями и навыками, достаточными для работы с различными видами программных систем и интернет-сервисов (файловые менеджеры, текстовые редакторы, электронные таблицы, браузеры, поисковые редакторы, электронные энциклопедии); умением характеризовать работу этих систем и сервисов с использованием соответствующей технологии.

# В результате изучении содержательной линии «Математические основы информатики»

#### Выпускник будет знать:

- сущность понятий «система счисления», «позиционная система счисления», «алфавит системы счисления», «основание системы счисления»;
- сущность понятия «высказывание», сущность операций И (конъюнкция), ИЛИ (дизъюнкция), НЕ (отрицание);
- сущность понятия «множество», сущность операций объединения, пересечения и дополнения».

#### Выпускник научится:

- записывать в двоичной системе целые числа от 0 до 1024;
- переводить заданное натуральное число из двоичной системы счисления в десятичную;
- сравнивать числа в двоичной записи;
- складывать и умножать числа, записанные в двоичной системе счисления;
- записывать логические выражения, составленные с помощью операций И, ИЛИ,
  НЕ и скобок; определять истинность такового составного высказывания, если известны значения истинности входящих в него элементов высказываний;
- оценивать мощность множеств, полученных из двух и более трех базовых множеств с помощью операции объединения, пересечения и дополнения;

- определять количество элементов в множествах, полученных из двух базовых множеств с помощью операции объединения, пересечения и дополнения;
- использовать при решении задач формулы перемножения и сложения количества вариантов;
- определять минимальную длину кодового слова по заданному алфавиту кодируемого текста и кодовому алфавиту (для кодового алфавита из 2, 3 или 4 символов);

#### Выпускник получит возможность:

- научиться записывать в развернутой форме восьмеричные и шестнадцатеричные числа;
- научиться переводить заданное натуральное число, не превышающее 1024, из десятичной записи в восьмеричную и из восьмеричной в десятичную;
- научиться переводить заданное натуральное число, не превышающее 1024, из десятичной записи в шестнадцатеричную и из шестнадцатеричной в десятичную;
- научиться выполнять «быстрый» перевод натуральных чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно;
- научиться вычитать числа, записанные в двоичной системе счисления;
- научиться вычислять значения арифметических выражений с целыми числами, представленными в двоичной, восьмеричной и шестнадцатеричной системах счисления;
- познакомиться с тем, как информация (данные) представляется в современных компьютерах и роботехнических системах;
- научиться строить таблицу истинности для логического выражения;
- научиться решать логические задачи с использованием таблиц истинности;
- познакомиться с законами алгебры логики;
- научиться решать логические задачи путем составления логических выражений и их преобразования с использованием основных свойств логических операций;
- познакомиться с логическими элементами;
- определять количество элементов в множествах, полученных из трех базовых множеств с помощью операции объединения, пересечения и дополнения;
- сформировать представление о области применения комбинаторных задач.

# В результате изучении содержательной линии «Алгоритмы и элементы программирования»

#### Выпускник будет знать:

- сущность понятий «исполнитель», «алгоритм», «программа»;
- сущность понятий «формальный исполнитель», «среда исполнителя», «система команд исполнителя»; знать об ограничениях, накладываемых средой исполнителя и его системой команд на круг задач, решаемых исполнителем;
- базовые алгоритмические конструкции;
- сущность метода последовательного уточнения алгоритма.

#### Выпускник научится:

- понимать разницу между употреблением терминов «исполнитель», «алгоритм», «программа» в обыденной речи и в информатике;
- выражать алгоритм решения задачи различными способами (словесным, графическим, в том числе и в виде блок-схемы, с помощью формальных языков и др.);
- определять наиболее оптимальный способ выражения алгоритма для решения конкретных задач (словесный, графический, с помощью формальных языков);
- определять результат выполнения заданного алгоритма или его фрагмента;

- выполнять без использования компьютера («вручную») несложные алгоритмы управления исполнителями Робот, Черепашка, Чертежник и др.;
- выполнять без использования компьютера («вручную») несложных алгоритмов обработки числовых и текстовых данных, записанных на конкретном языке программирования с использованием основных управляющих конструкций последовательного программирования (линейная программа, ветвление, повторение, вспомогательные алгоритмы);
- составлять несложные алгоритмы управления исполнителями Робот, Черепашка,
  Чертежник и др.; выполнять эти программы на компьютере;
- составлять несложные алгоритмы обработки числовых и текстовых данных с использованием основных управляющих конструкций последовательного программирования и записывать их в виде программ на конкретном языке программирования; выполнять эти программы на компьютере;
- использовать величины (переменные) различных типов, табличные величины (массивы), а также выражения, составленные из этих величин; использовать оператор присваивания;
- анализировать предложенную программу, например, определять, какие результаты возможны при заданном множестве исходных значений;
- использовать при разработке алгоритмов логические значения, операции и выражения с ними;
- записывать на выбранном языке программирования арифметические и логические выражения и вычислять их значения.

#### Выпускник получит возможность:

- познакомиться с задачами обработки данных и алгоритмами их решения;
- познакомиться с использованием в программах строковых величин и с операциями со строковыми величинами;
- научиться разрабатывать и записывать на языке программирования эффективные алгоритмы, содержащие базовые алгоритмические конструкции
- научиться составлять алгоритмы и программы для решения задач, возникающих в процессе учебы и вне ее;
- познакомиться с понятием «управление», с примерами того, как компьютер управляет различными системами;
- познакомиться с учебной средой составления программ управления автономными роботами и разобрать примеры алгоритмов управления, разработанными в этой среде.

# В результате изучении содержательной линии «**Моделирование и формализация**» Выпускник будет знать:

сущность понятий модель, моделирование, информационная модель, математическая модель и др.;

#### Выпускник научится:

- использовать терминологию, связанную с графами (вершина, ребро, путь, длина ребра и пути), деревьями (корень, лист, высота дерева) и списками (первый элемент, последний элемент, предыдущий элемент, следующий элемент; вставка, удаление и замена элемента);
- описывать граф с помощью матрицы смежности с указанием длин ребер (знание термина «матрица смежности» не обязательно);
- использовать табличные (реляционные) базы данных, выполнять отбор строк таблицы, удовлетворяющих определенному условию;
- пользоваться различными формами представления данных (таблицы, графики, диаграммы и т.д.);

Выпускник получит возможность:

- сформировать представление о моделировании как методе научного познания; о компьютерных моделях и их использовании для исследования объектов окружающего мира;
- познакомиться с примерами использования графов, деревьев и списков при описании реальных объектов и процессов;
- познакомиться с примерами математических моделей и использования компьютеров при их анализе;
- понять сходства и различия между математической моделью объекта и его натурной моделью, между математической моделью объекта/явления и словесным описанием;
- научиться строить математическую модель задачи выделять исходные данные и результаты, выявлять соотношения между ними.
- научиться выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования.

# В результате изучении содержательной линии «Обработка графической информации»

Выпускник будет знать:

- сущность понятий «пиксель», «растровая графика», «векторная графика»;
- сущность понятий модель, моделирование, информационная модель, математическая модель и др.;

Выпускник научится:

- выполнять ввод изображений в компьютер;
- создавать простые растровые изображения; редактировать готовые растровые изображения;
- создавать простые векторные изображения.

Выпускник получит возможность:

- познакомиться с цифровым представлением графической информации;
- познакомиться с различными цветовыми моделями;
- познакомиться с понятием «пространственное разрешение монитора», «глубина кодирования (цвета)», «палитра»;
- научиться оценивать количественные параметры, связанные с цифровым представлением и хранением изображений.

# В результате изучении содержательной линии «Обработки текстовой информации»

Выпускник будет знать:

- сущность понятия «кодовая таблица»;

Выпускник научится:

- создавать, редактировать и форматировать текстовые документы;
- использовать средства автоматизации информационной деятельности при создании текстовых документов;
- познакомиться с двоичным кодированием текстов и с наиболее употребительными современными кодами;
- оценивать количественные параметры, связанные с цифровым представлением текстовой информации с помощью наиболее употребительных современных кодировок;

выпускник получит возможность научиться:

создавать текстовые документы с рисунками, таблицами, диаграммами.
 В результате изучении содержательной линии «Мультимедиа»

Выпускник будет знать:

- сущность технологии мультимедиа;
- общие подходы к дискретному представлению аудиовизуальных данных; *выпускник научится*:
  - использовать основные приемы создания мультимедийных презентаций (подбирать дизайн презентации, макет слайда, размещать информационные объекты, использовать гиперссылки и пр.);

выпускник получит возможность:

- познакомится с программными средствами для работы с аудиовизуальными данными и соответствующим понятийным аппаратом;
- научиться оценивать количественные параметры, связанные с цифровым представлением аудиовизуальной информации.

В результате изучения содержательной линии «**Обработка числовой информации**» выпускник будет знать:

- назначение динамических (электронных) таблиц; *выпускник научится*:
  - использовать основные способы графического представления числовой информации (графики, круговые и столбчатые диаграммы):
  - использовать динамические (электронные) таблицы, в том числе формулы с использованием абсолютной, относительной и смешанной адресации, выделение диапазона таблицы и упорядочивание (сортировку) его элементов;

выпускник получит возможность научиться

- научиться проводить обработку большого массива данных с использованием средств электронной таблицы;
- использовать электронные таблицы для решения задач, возникающих в процессе учебы и вне ее.

В результате изучения содержательной линии «**Коммуникационные технологии**» выпускник будет знать:

- базовые нормы информационной этики и права; *выпускник научится*:
  - оперировать понятиями, связанными с передачей данных (источники приемник данных; канал связи, скорость передачи данных по каналу связи, пропускная способность канала связи);
  - использовать термины, описывающие скорость передачи данных, оценивать время передачи данных;
  - анализировать доменные имена компьютеров и адреса документов в Интернете;
  - проводить поиск информации в сети Интернет по запросам с использованием логических операций;
  - приемам безопасной организации своего личного пространства данных с использованием индивидуальных накопителей данных, интернет-сервисов и т. п.;
- соблюдать основы норм информационной этики и права;

выпускник получит возможность:

- познакомиться с принципами функционирования Интернета и сетевого взаимодействия между компьютерами;
- расширить представления о компьютерных сетях распространения и обмена информацией, об использовании информационных ресурсов общества с соблюдением соответствующих правовых и этических норм, требований информационной безопасности;

- научиться оценивать возможное количество результатов поиска информации в Интернете, полученных по тем или иным запросам;
- познакомиться с подходами к оценке достоверности информации (оценка надежности источника, сравнение данных из разных источников ив разные моменты времени и т.п.).

#### Содержание учебного предмета

## Информация и информационные процессы (8 часов)

Информация - одно из основных понятий современной науки. Субъективные характеристики информации, зависящие от личности получателя информации и обстоятельств получения информации: важность, своевременность, достоверность, актуальность и т.п.

Различные аспекты слова «Информация»: информация как данные, которые могут быть обработаны автоматизированно, системой, и информация как сведения, предназначенные для восприятия человеком.

Примеры данных: тексты, числа. Дискретность данных. Анализ данных. Возможность описания непрерывных объектов и процессов с помощью дискретных данных.

Информационные процессы — процессы, связанные с хранением, преобразованием и передачей данных. Примеры информационных процессов в системах различной природы.

Хранение информации. Носители информации (бумажные, магнитные, оптические, флеш-память). Качественные и количественные характеристики современных носителей информации: объем информации, хранящейся на носителе; скорости записи и чтения информации. Хранилища информации. Сетевое хранение информации. Носители информации в живой природе.

Передача информации. Источник, информационный канал, приемник информации.

Обработка информации. Обработка, связанная с получением новой информации. Обработка, связанная с изменением формы, но не изменяющая содержание информации. Поиск информации в сети Интернет. Средства и методика поиска информации. Построение запросов; браузеры. Поисковые машины.

Представление информации. Формы представления информации. Символ. Алфавит - конечное множество символов; мощность алфавита. Текст - конечная последовательность символов данного алфавита. Количество различных текстов данной длины в данном алфавите.

Язык как способ представления информации. Разнообразие языков и алфавитов. Естественные и формальные языки. Алфавит текстов на русском языке.

Кодирование символов одного алфавита с помощью кодовых слов в другом алфавите; кодовая таблица, декодирование. Универсальность дискретного (цифрового, двоичного) кодирования. Двоичный алфавит. Двоичный код. Разрядность двоичного кода. Связь длины (разрядности) двоичного кода и количества кодовых комбинаций.

Двоичный алфавит. Представление данных в компьютер как текстов в двоичном алфавите. Двоичные коды с фиксированной длиной кодового слова. Разрядность кода — длина кодового слова. Зависимость количества кодовых комбинаций от разрядности кода.

Единицы измерения длины двоичных текстов: бит, байт, Килобайт и т. д. Количество информации, содержащееся в сообщении.

# Компьютер как универсальное устройство работы с информацией (7 часов)

Архитектура компьютера: процессор, оперативная память, внешняя энергонезависимая память, устройства ввода-вывода; их количественные характеристики.

Компьютеры, встроенные в технические устройства и производственные комплексы. Роботизированные производства, аддитивные технологии (3D-принтеры).

Носители информации, используемые в ИКТ. История и перспективы развития. Представление об объемах данных и скоростях доступа, характерных для различных видов носителей. История и тенденции развития компьютеров, улучшение характеристик компьютеров. Физические ограничения на значения характеристик компьютеров.

Суперкомпьютеры. Параллельные вычисления.

Состав и функции программного обеспечения компьютера: системное программное обеспечение, прикладное программное обеспечение, системы программирования. Правовые нормы использования программного обеспечения.

Компьютерные вирусы. Антивирусная профилактика.

**Файловая система.** Принципы построения файловых систем. Каталог (директория). Основные операции при работе с файлами: создание, редактирование, копирование, перемещение, удаление. Типы файлов.

Характерные размеры файлов различных типов (страница печатного текста, полный текст романа «Евгений Онегин», минутный видеоклип, полуторачасовой фильм, файл данных космических наблюдений, файл промежуточных данных при математическом моделировании сложных физических процессов и др.).

Графический пользовательский интерфейс (рабочий стол, окна, диалоговые окна, меню). Оперирование компьютерными информационными объектами в нагляднографической форме: создание, именование, сохранение, удаление объектов, организация их семейств. Архивирование и разархивирование. Файловый менеджер. Поиск в файловой системе.

Гигиенические, эргономические и технические условия безопасной эксплуатации компьютера.

## Математические основы информатики (12 часов)

Системы счисления. Позиционные и непозиционные системы счисления. Примеры представления чисел в позиционных системах счисления. Основание системы счисления. Алфавит (множество цифр) системы счисления. Количество цифр, используемых в системе счисления с заданным основанием. Краткая и развернутая формы записи чисел в позиционных системах счисления.

Двоичная система счисления, запись целых чисел в пределах от 0 до 1024. Перевод натуральных чисел из десятичной системы счисления в двоичную и из двоичной в десятичную.

Восьмеричная и шестнадцатеричная системы счисления. Перевод натуральных чисел из десятичной системы счисления в восьмеричную, шестнадцатеричную и обратно. Перевод натуральных чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно.

Арифметические действия в системах счисления.

Элементы комбинаторики, теории множеств и математической логики. Расчет количества вариантов: формулы перемножения и сложения количества вариантов. Количество текстов данной длины в данном алфавите.

Множество. Определение количества элементов во множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения.

Высказывания. Простые и сложные высказывания. Диаграммы Эйлера — Венна. Логические значения высказываний. Логические выражения. Логические операции: «и» (конъюнкция, логическое умножение), «или» (дизъюнкция, логическое сложение), «не»

(логическое отрицание). Правила записи логических выражений. Приоритеты логических операций.

Таблицы истинности. Построение таблиц истинности для логических выражений.

Законы алгебры логики. Использование таблиц истинности для доказательства законов алгебры логики. Логические элементы. Схемы логических элементов и их физическая (электронная) реализация. Знакомство с логическими основами компьютера.

## Алгоритмы и элементы программирования (28 часов)

**Исполнители и алгоритмы. Управление исполнителями.** Исполнители. Состояния, возможные обстановки и система команд исполнителя; команды приказы и команды-запросы; отказ исполнителя. Необходимость формального описания исполнителя. Ручное управление исполнителем.

Алгоритм как план управления исполнителем (исполнителями). Свойства алгоритмов. Алгоритмический язык (язык программирования) - формальный язык для записи алгоритмов. Программа — запись алгоритма на конкретном алгоритмическом языке. Компьютер автоматическое устройство, способное управлять по заранее составленной программе исполнителями, выполняющими команды. Программное управление исполнителем.

Словесное описание алгоритмов, Описание алгоритма с помощью блок-схем. Отличие словесного описания алгоритма, от описания на формальном алгоритмическом языке.

Системы программирования. Средства создания и выполнения программ.

Управление. Сигнал. Обратная связь. Примеры: компьютер и управляемый им исполнитель (в том числе робот); компьютер, получающий сигналы от цифровых датчиков в ходе наблюдений и экспериментов, и управляющий реальными (в том числе движущимися) устройствами.

**Алгоритмические конструкции.** Конструкция «следование». Линейный алгоритм. Ограниченность линейных алгоритмов: невозможность предусмотреть зависимость последовательности выполняемых действий от исходных данных.

Конструкция «ветвление». Условный оператор: полная и неполная формы. Выполнение и невыполнение условия (истинность и ложность высказывания). Простые и составные условия. Запись составных условий.

Конструкция «повторения»: циклы с заданным числом повторений, с условием выполнения, с переменной цикла. Проверка условия выполнения цикла до начала выполнения тела цикла и после выполнения тела цикла: постусловие и предусловие цикла. Инвариант цикла.

Язык программирования. Основные правила языка программирования Паскаль: структура программы; правила представления данных: правила записи основных операторов (ввод, вывод, присваивание, ветвление, цикл).

**Разработка алгоритмов и программ.** Составление алгоритмов и программ по управлению исполнителями Робот, Черепашка, Чертежик и др.

Конструирование алгоритмов: разбиение задачи на подзадачи, понятие вспомогательного алгоритма. Вызов вспомогательных алгоритмов.

Оператор присваивания.

Понятие простой величины. Константы и переменные. Переменная: имя и значение. Типы переменных: целые, вещественные, символьные, строковые, логические.

Представление о структурах данных. Табличные величины (массивы). Одномерные массивы. Список. Первый элемент, последний элемент, предыдущий элемент, следующий элемент. Вставка, удаление и замена элемента.

Примеры задач обработки данных: нахождение минимального и максимального числа из двух, трех, четырех данных чисел; нахождение всех корней заданного квадратного уравнения; заполнение числового массива в соответствии с формулой или

путем ввода чисел; нахождение суммы элементов данной конечной числовой последовательности или массива; нахождение минимального (максимального) элемента массива. Знакомство с алгоритмами решения этих задач. Реализации этих алгоритмов в выбранной среде программирования.

Знакомство с постановками более сложных задач обработки данных и алгоритмами их решения: сортировка массива, выполнение поэлементных операций с массивами; нахождение наибольшего общего делителя (алгоритм Евклида).

Понятие об этапах разработки программ: составление требований к программе, выбор алгоритма и его реализация в виде программы на выбранном алгоритмическом языке, отладка программы с помощью выбранной системы программирования, тестирование. Простейшие приемы диалоговой отладки программ (выбор точки останова, пошаговое выполнение, просмотр значений величин, отладочный вывод). Понятие документирования программ.

**Анализ алгоритмов.** Сложность вычисления: количество программ, выполненных операций, размер используемой памяти; их зависимость от размера исходных данных. Примеры коротких программ, выполняющих много шагов по обработке небольшого объема данных; примеры коротких программ, выполняющих обработку большого объема данных.

Определение возможных результатов работы алгоритма при данном множестве входных данных; определение возможных входных данных, приводящих к данному результату. Примеры описания объектов и процессов с помощью набора числовых характеристик, а также зависимостей между этими характеристиками, выражаемыми с помощью формул.

**Робототехника.** Робототехника наука о разработке и использовании автоматизированных технических систем. Автономные роботы и автоматизированные комплексы. Микроконтроллер. Сигнал. Обратная связь: получение сигналов от цифровых датчиков (касания, расстояния, света, звука и др.

Примеры роботизированных систем (система управления движением в транспортной системе, сварочная линия автозавода, автоматизированное управление отопления дома, автономная система управления транспортным средством и т. п.).

## Моделирование и формализация (8 часов)

**Моделирование** как метод познания. Модели и моделирование. Этапы построения информационной модели. Оценка адекватности модели моделируемому объекту и целям моделирования. Классификация информационных моделей.

**Графы,** деревья. Граф. Вершина, ребро, путь. Ориентированные и неориентированные графы. Начальная вершина (источник) и конечная вершина (сток) в ориентированном графе. Длина (вес) ребра и пути. Понятие минимального пути. Матрица смежности графа (с длинами ребер).

Дерево. Корень, лист, вершина (узел). Предшествующая вершина, последующие вершины. Поддерево. Высота дерева. Бинарное дерево. Генеалогическое дерево.

**Базы данных.** Таблица как представление отношения. Реляционные базы данных Основные понятия, типы данных, системы управления базами данных и принципы работы с ними. Ввод и редактирование записей. Поиск, удаление и сортировка данных.

Математическое моделирование. Понятие математической модели. Задачи, решаемые с помощью математического (компьютерного) моделирования. Отличие математической модели от натурной модели и от словесного (литературного описания объекта. Использование компьютеров при работе математическими моделями.

Компьютерные эксперименты. Примеры использования математических (компьютерных моделей при решении научно-технических задач. Представление о цикле

моделирования: построение математической модели, се программная реализация, проверка на простых примерах (тестирование), проведение компьютерного эксперимента, анализ его результатов, уточнение модели.

## Обработка графической информации (4 часа)

Общее представление о цифровом представлении изображений. Кодирование цвета. Цветовые модели. Модели RGB CMYK. Модели HSB и CMY. Глубина кодирования. Компьютерная графика (растровая, векторная). Форматы графических файлов.

Оценка количественных параметров, связанных с представлением и хранением изображений. Знакомство с графическими редакторами. Операции редактирования графических объектов: изменение размера сжатие изображения; обрезка, поворот, отражение, работа областями (выделение, копирование, заливка цветом), коррекция цвета, яркости и контрастности.

Ввод изображений с использованием различных цифровых устройств (цифровых фотоаппаратов и микроскопов, видеокамер, сканеров и т. д.).

## Обработка текстовой информации (9 часов)

Текстовые документы и их структурные элементы (страница, абзац, строка, слово, символ).

Текстовый процессор - инструмент создания, редактирования и форматирования текстов. Свойства страницы, абзаца, символа. Стилевое форматирование.

Включение в текстовый документ списков, таблиц, и графических объектов. Включение в текстовый документ диаграмм, формул, нумерации страниц, колонтитулов, ссылок др. История изменений. Коллективная работа над документом. Проверка правописания, словари.

Сохранение документа в различных текстовых форматах Инструменты ввода текста с использованием сканера, программ распознавания, расшифровки устной речи. Компьютерный перевод.

Компьютерное представление текстовой информации. Кодовые таблицы. Код ASCII. Кодировки кириллицы. Примеры кодирования букв национальных алфавитов. Представление о стандарте Uniciode.

## Мультимедиа (4 часа)

Понятие технологи мультимедиа и области ее применения. Подготовка компьютерных презентаций. Дизайн презентации и макеты слайдов. Звук и видео как составляющие мультимедиа. Включение в презентацию аудиовизуальных объектов.

Общее представление о цифровом представлении аудиовизуальной информации, Кодирование звука. Разрядность и частота записи. Количество каналов записи. Оценка количественных параметров, связанных с представлением и хранением звуковых файлов.

## Обработка числовой информации (6 часов)

Электронные (динамические) таблицы. Формула е использованием абсолютной, относительной и смешанной адресации; преобразование формул при копировании. Выделение диапазона таблицы и упорядочение (сортировка) его элементов; построение графиков и диаграмм.

## Коммуникационные технологии (10 часов)

Компьютерные сети. Интернет. Скорость передачи информации. Пропускная способность канала. Передача информации в современных системах связи. Адресация в

сети Интернет. Доменная система имен. Сайт. Сетевое хранение данных. Большие данные в природе и технике

Виды деятельности в сети Интернет. Интернет-сервисы: почтовая служба; справочные службы (карты, расписания и т. п.), поисковые службы, службы обновления программного обеспечения и др.

Приемы, повышающие безопасность работы в сети Интернет. Методы индивидуального и коллективного размещения новой информации в сети Интернет. Технологии создании сайта. Содержание и структура сайта. Оформление сайта, Размещение сайта в Интернете.

Взаимодействие на основе компьютерных сетей: электронная почта, чат, форум, телеконференции и др. Информационные ресурсы компьютерных сетей: Всемирная паутина, файловые архивы.

Базовые представления о правовых и этических аспектах работы в сети Интернет. Личная информация, средства ее защиты. Организация личного информационного пространства.

### Резерв учебного времени (8 часов)

#### Тематическое планирование

| Nº  | Название темы в<br>программе | Часы    |         |         |
|-----|------------------------------|---------|---------|---------|
|     |                              | 7 класс | 8 класс | 9 класс |
| 1.  | Информация и                 | 8       |         |         |
|     | информационные               |         |         |         |
|     | процессы                     |         |         |         |
| 2.  | Компьютер как                | 7       |         |         |
|     | универсальное устройство     |         |         |         |
|     | работы с информацией         |         |         |         |
| 3.  | Математические основы        |         | 12      |         |
|     | информатики                  |         |         |         |
| 4.  | Алгоритмы и элементы         |         | 20      | 8       |
|     | программирования             |         |         |         |
| 5.  | Моделирование и              |         |         | 8       |
|     | формализация                 |         |         |         |
| 6.  | Обработка графической        | 4       |         |         |
|     | информации                   |         |         |         |
| 7.  | Обработки текстовой          | 9       |         |         |
|     | информации                   |         |         |         |
| 8.  | Мультимедиа                  | 4       |         |         |
| 9.  | Обработки числовой           |         |         | 6       |
|     | информации в                 |         |         |         |
|     | электронных таблицах         |         |         |         |
| 10. | Коммуникационные             |         |         | 10      |
|     | технологии                   |         |         |         |
|     | Резерв учебного времени      | 3       | 3       | 2       |
|     | ИТОГО                        | 35      | 35      | 34      |